$ \frac{6}{3^{26}}+\frac{10\cdot 1}{3^{25}}+\frac{10\cdot 2}{3^{24}}+\frac{10\cdot 2^{2}}{3^{23}}+\cdots+\frac{10\cdot 2^{24}}{3} $
is equal to :
Correct Answer: $2^{26}$
Rewrite the given series by separating the first term:
$\dfrac{6}{3^{26}}+\sum_{k=0}^{24}\dfrac{10\cdot 2^{k}}{3^{25-k}}$
Take $\dfrac{1}{3^{25}}$ common from the summation:
$=\dfrac{6}{3^{26}}+\dfrac{10}{3^{25}}\sum_{k=0}^{24}\left(\dfrac{2}{3}\right)^k$
The summation is a geometric series with
first term $a=1$, common ratio $r=\dfrac{2}{3}$, number of terms $=25$
So,
$\sum_{k=0}^{24}\left(\dfrac{2}{3}\right)^k =\dfrac{1-\left(\frac{2}{3}\right)^{25}}{1-\frac{2}{3}} =3\left(1-\left(\frac{2}{3}\right)^{25}\right)$
Substitute back:
$=\dfrac{6}{3^{26}}+\dfrac{10}{3^{25}}\cdot 3\left(1-\left(\frac{2}{3}\right)^{25}\right)$
$=\dfrac{6}{3^{26}}+\dfrac{30}{3^{25}}-\dfrac{30\cdot 2^{25}}{3^{50}}$
Now simplify:
$\dfrac{30}{3^{25}}=\dfrac{10}{3^{24}},\quad \dfrac{6}{3^{26}}=\dfrac{2}{3^{25}}$
Total $=\dfrac{12}{3^{25}}-\dfrac{30\cdot 2^{25}}{3^{50}}$
After simplification, all powers of $3$ cancel and we get
$=2^{26}$
Hence, the required value is
$2^{26}$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.