$ f(x)=\operatorname{Sgn}(\sin x)+\operatorname{Sgn}(\cos x)+\operatorname{Sgn}(\tan x)+\operatorname{Sgn}(\cot x),\ x\neq \frac{n\pi}{2},\ n\in\mathbb{Z}, $
where
$ \operatorname{Sgn}(t)= \begin{cases} 1, & \text{if } t>0,\\ -1, & \text{if } t<0, \end{cases} $
is :
Correct Answer: 2
The values of $\sin x$, $\cos x$, $\tan x$ and $\cot x$ depend on the quadrant in which $x$ lies.
The domain excludes $x=\dfrac{n\pi}{2}$, so $\tan x$ and $\cot x$ are always defined.
Check the signs of all four functions in different quadrants.
First Quadrant $(0
$\sin x>0,\ \cos x>0,\ \tan x>0,\ \cot x>0$
$f(x)=1+1+1+1=4$
Second Quadrant $(\pi/2
$\sin x>0,\ \cos x<0,\ \tan x<0,\ \cot x<0$
$f(x)=1-1-1-1=-2$
Third Quadrant $(\pi
$\sin x<0,\ \cos x<0,\ \tan x>0,\ \cot x>0$
$f(x)=-1-1+1+1=0$
Fourth Quadrant $(3\pi/2
$\sin x<0,\ \cos x>0,\ \tan x<0,\ \cot x<0$
$f(x)=-1+1-1-1=-2$
Hence, the range of $f(x)$ is
$\{4,\,0,\,-2\}$
The sum of all the elements in the range is
$4+0+(-2)=2$
Therefore, the required sum is
2
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.