(A) (e¹⁰ − 1) / [2e²(e² − 1)]
(B) (e²⁰ − 1) / [2e²(e² − 1)]
(C) (e¹⁰ − 1) / [2(e² − 1)]
(D) (e²⁰ − 1) / [2(e² − 1)]
Correct Answer: (e²⁰ − 1) / [2(e² − 1)]
We first simplify the numerator using logarithmic properties.
logₑ(sec(ex) · sec(e²x) · … · sec(e¹⁰x))
Using log(ab) = log a + log b:
= Σ logₑ(sec(eᵏx)), where k = 1 to 10
For small values of t,
sec t ≈ 1 + t²/2
Taking logarithm:
logₑ(sec t) ≈ t²/2
Now substitute t = eᵏx:
logₑ(sec(eᵏx)) ≈ (e²ᵏ x²)/2
Hence numerator becomes:
Σ (e²ᵏ x²)/2 = (x²/2) Σ e²ᵏ
This is a geometric series:
Σ e²ᵏ = e² (e²⁰ − 1)/(e² − 1)
So numerator ≈
(x²/2) · e² (e²⁰ − 1)/(e² − 1)
Now simplify the denominator:
e² − e2cos x
Using cos x ≈ 1 − x²/2:
2cos x ≈ 2 − x²
So,
e2cos x ≈ e² · e−x² ≈ e²(1 − x²)
Therefore,
e² − e²(1 − x²) = e²x²
Now take the limit:
Limit = [ (x²/2) · e² (e²⁰ − 1)/(e² − 1) ] / (e²x²)
Cancel x² and e²:
= (e²⁰ − 1) / [2(e² − 1)]
Hence, the required value is
(e²⁰ − 1) / [2(e² − 1)]
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.