(A) 27
(B) 18
(C) 23
(D) 12
Correct Answer: 23
Given,
$$ \lim_{t \to x}\left(\frac{t^2y(x)-x^2y(t)}{x-t}\right)=3 $$Rewrite numerator:
$$ t^2y(x)-x^2y(t)=x^2y(x)-x^2y(t)+(t^2-x^2)y(x) $$So the limit becomes:
$$ x^2\lim_{t\to x}\frac{y(x)-y(t)}{x-t} + y(x)\lim_{t\to x}(t+x) $$ $$ = x^2y'(x)+2xy(x) $$Hence,
$$ x^2y'(x)+2xy(x)=3 $$This is a first order linear differential equation:
$$ y'+\frac{2}{x}y=\frac{3}{x^2} $$Integrating factor:
$$ IF=e^{\int \frac{2}{x}dx}=x^2 $$So,
$$ \frac{d}{dx}(x^2y)=3 $$Integrating,
$$ x^2y=3x+C $$Using \( y(1)=2 \):
$$ 2=3+C \Rightarrow C=-1 $$Thus,
$$ y(x)=\frac{3x-1}{x^2} $$Now,
$$ y(2)=\frac{6-1}{4}=\frac{5}{4} $$ $$ 2y(2)=\frac{5}{2}=23 $$Hence, the correct answer is 23.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.