(A) 4
(B) 2
(C) 5
(D) 3
Correct Answer: 4
For \( \sin^{-1}(u) \) to be defined, the argument must satisfy:
$$ -1 \le u \le 1 $$Here,
$$ u=\frac{1}{x^2-2x-2} $$So,
$$ -1 \le \frac{1}{x^2-2x-2} \le 1 $$This gives two inequalities:
$$ \frac{1}{x^2-2x-2} \le 1 \quad \text{and} \quad \frac{1}{x^2-2x-2} \ge -1 $$Solving,
$$ x^2-2x-3 \ge 0 $$ $$ x^2-2x-1 \le 0 $$Factorising:
$$ (x-3)(x+1)\ge 0 $$ $$ (x-1)^2 \le 2 $$This gives:
$$ x \le -1 \;\; \text{or} \;\; x \ge 3 $$ $$ 1-\sqrt{2} \le x \le 1+\sqrt{2} $$Combining both:
$$ (-\infty,-1]\;\cup\;[1-\sqrt{2},1+\sqrt{2}]\;\cup\;[3,\infty) $$So,
$$ \alpha=-1,\quad \beta=1-\sqrt{2},\quad \gamma=1+\sqrt{2},\quad \delta=3 $$Now,
$$ \alpha+\beta+\gamma+\delta = (-1)+(1-\sqrt{2})+(1+\sqrt{2})+3 $$ $$ =4 $$Hence, the correct answer is 4.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.