Add Your Heading Text Here

Let [t] denote the greatest integer less than or equal to t. If the function f(x) is continuous at x = 0, then a^2 + b^2 is equal to
Q. Let \([t]\) denote the greatest integer less than or equal to \(t\). If the function \[ f(x)= \begin{cases} b^2\sin\!\left(\dfrac{\pi}{2}\left[\dfrac{\pi}{2}(\cos x+\sin x)\cos x\right]\right), & x<0,\\[6pt] \dfrac{\sin x-\dfrac{1}{2}\sin 2x}{x^3}, & x>0,\\[8pt] a, & x=0, \end{cases} \] is continuous at \(x=0\), then \(a^2+b^2\) is equal to

(A) \( \dfrac{1}{2} \)

(B) \( \dfrac{5}{8} \)

(C) \( \dfrac{3}{4} \)

(D) \( \dfrac{9}{16} \)

Correct Answer: \( \dfrac{3}{4} \)

Explanation

For continuity at \(x=0\),

\[ \lim_{x\to0^-} f(x)=\lim_{x\to0^+} f(x)=f(0)=a \]

First find the left hand limit.

As \(x\to0^{-}\),

\[ \cos x \to 1,\quad \sin x \to 0 \]
\[ (\cos x+\sin x)\cos x \to 1 \]
\[ \left[\frac{\pi}{2}\cdot 1\right]=\left[\frac{\pi}{2}\right]=1 \]
\[ \lim_{x\to0^-}f(x)=b^2\sin\!\left(\frac{\pi}{2}\right)=b^2 \]

Now find the right hand limit.

\[ \sin x = x-\frac{x^3}{6}+o(x^3),\quad \sin 2x = 2x-\frac{8x^3}{6}+o(x^3) \]
\[ \sin x-\frac{1}{2}\sin 2x = \left(x-\frac{x^3}{6}\right)-\frac{1}{2}\left(2x-\frac{8x^3}{6}\right) = \frac{x^3}{2} \]
\[ \lim_{x\to0^+}\frac{\sin x-\frac{1}{2}\sin 2x}{x^3} = \frac{1}{2} \]

Thus,

\[ a=\frac{1}{2},\quad b^2=\frac{1}{2} \]
\[ a^2+b^2=\frac{1}{4}+\frac{1}{2}=\frac{3}{4} \]

Therefore, the correct answer is \( \dfrac{3}{4} \).

Related JEE Main Questions

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top