W g of a non-volatile electrolyte solid solute of molar mass M g mol⁻¹ when dissolved in 100 mL water, decreases vapour pressure of water from 640 mm Hg to 600 mm Hg
Q. W g of a non-volatile electrolyte solid solute of molar mass M g mol−1 when dissolved in 100 mL water, decreases vapour pressure of water from 640 mm Hg to 600 mm Hg. If aqueous solution of the electrolyte boils at 375 K and Kb for water is 0.52 K kg mol−1, then the mole fraction of the electrolyte solute (x2) in the solution can be expressed as

(Given : density of water = 1 g/mL and boiling point of water = 373 K)

(A) \( \dfrac{16}{2.6} \times \dfrac{W}{M} \)

(B) \( \dfrac{1.3}{8} \times \dfrac{M}{W} \)

(C) \( \dfrac{2.6}{16} \times \dfrac{M}{W} \)

(D) \( \dfrac{1.3}{8} \times \dfrac{W}{M} \)

Correct Answer: (D)

Explanation

Lowering in vapour pressure is given by Raoult’s law:

\[ \frac{\Delta P}{P^\circ} = x_2 \]

Here,

\[ \Delta P = 640 - 600 = 40 \text{ mm Hg}, \quad P^\circ = 640 \text{ mm Hg} \]
\[ x_2 = \frac{40}{640} = \frac{1}{16} \]

Elevation in boiling point:

\[ \Delta T_b = 375 - 373 = 2 \text{ K} \]

Using boiling point elevation formula:

\[ \Delta T_b = i K_b m \]

Mass of water = 100 mL = 100 g = 0.1 kg.

\[ m = \frac{W/M}{0.1} = \frac{10W}{M} \]

Substitute values:

\[ 2 = i \times 0.52 \times \frac{10W}{M} \]
\[ i = \frac{2}{5.2} \times \frac{M}{W} = \frac{1}{2.6} \times \frac{M}{W} \]

For electrolyte:

\[ x_2 = i \times \frac{n_2}{n_1} \]

Moles of water:

\[ n_1 = \frac{100}{18} \approx 5.56 \]

Thus,

\[ x_2 = \frac{1}{2.6} \times \frac{W}{M} \times \frac{1}{5.56} \]
\[ x_2 = \frac{1.3}{8} \times \frac{W}{M} \]

Related JEE Main Questions

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top