(A) 0
(B) 1
(C) 3
(D) 11
Correct Answer: 0
First compute $\vec c=\vec a\times\vec b$:
$$ \vec c= \begin{vmatrix} \hat i & \hat j & \hat k\\ 2 & 1 & -2\\ 1 & 1 & 0 \end{vmatrix} =2\hat i-2\hat j+\hat k $$
$$ |\vec c|=\sqrt{2^2+(-2)^2+1^2}=3 $$
Using $$ |\vec c\times\vec d|=|\vec c||\vec d|\sin\theta $$ with $\theta=\dfrac{\pi}{4}$:
$$ 3=3|\vec d|\cdot\frac{1}{\sqrt2} \Rightarrow |\vec d|=\sqrt2 $$
Now use the identity
$$ |\vec d-\vec a|^2=|\vec d|^2+|\vec a|^2-2\vec a\cdot\vec d $$
Here,
$$ |\vec a|^2=2^2+1^2+(-2)^2=9,\quad |\vec d|^2=2 $$
Given $|\vec d-\vec a|=\sqrt{11}$:
$$ 11=2+9-2\vec a\cdot\vec d $$
$$ 11=11-2\vec a\cdot\vec d $$
$$ \vec a\cdot\vec d=0 $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.