(A) 413
(B) 398
(C) 385
(D) 423
Correct Answer: 385
Let $z = x + iy$.
First condition:
$$ \left|\frac{z-6i}{z-2i}\right|=1 \;\Rightarrow\; |z-6i|=|z-2i| $$
This represents the perpendicular bisector of the points $2i$ and $6i$.
Midpoint $=4i$ and the line is horizontal:
$$ y=4 $$
Second condition:
$$ \left|\frac{z-(8-2i)}{z+2i}\right|=\frac{3}{5} \Rightarrow |z-(8-2i)|=\frac{3}{5}|z+2i| $$
Squaring and simplifying:
$$ 25\big[(x-8)^2+(y+2)^2\big]=9\big[x^2+(y+2)^2\big] $$
$$ x^2+y^2-25x+4y+104=0 $$
Completing squares:
$$ (x-12.5)^2+(y+2)^2=56.25 $$
This is a circle with center $(12.5,-2)$ and radius $7.5$.
Intersection with $y=4$:
$$ (x-12.5)^2+36=56.25 $$
$$ (x-12.5)^2=20.25 \Rightarrow x=17,\;8 $$
Hence,
$$ z_1=8+4i,\quad z_2=17+4i $$
Required sum:
$$ |8+4i|^2=8^2+4^2=80 $$
$$ |17+4i|^2=17^2+4^2=305 $$
$$ \sum |z|^2=80+305=\boxed{385} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.