(A) 73
(B) 74
(C) 75
(D) 76
Correct Answer: 73
Given sequence:
$$ 729,\,81,\,9,\,1,\ldots = 3^6,\,3^4,\,3^2,\,3^0,\ldots $$
Hence, the $n^{\text{th}}$ term is:
$$ a_n = 3^{\,6-2(n-1)} = 3^{\,8-2n} $$
Product of first $n$ terms:
$$ P_n = \prod_{k=1}^{n} 3^{\,8-2k} = 3^{\sum_{k=1}^{n}(8-2k)} $$
$$ \sum_{k=1}^{n}(8-2k) = 8n - n(n+1) = 7n - n^2 $$
$$ \Rightarrow P_n = 3^{\,7n-n^2} $$
Now,
$$ (P_n)^{1/n} = 3^{\,7-n} $$
So the summation becomes:
$$ 2\sum_{n=1}^{40}3^{\,7-n} $$
This is a geometric series:
$$ \sum_{n=1}^{40}3^{7-n} =3^6\left(\frac{1-(1/3)^{40}}{1-1/3}\right) =\frac{3^7}{2}\left(1-\frac{1}{3^{40}}\right) $$
Multiplying by 2:
$$ 2\sum_{n=1}^{40}(P_n)^{1/n} =3^7\left(1-\frac{1}{3^{40}}\right) =\frac{3^{47}-3^7}{3^{40}} $$
Comparing with
$$ \frac{3^{\alpha}-1}{3^{\beta}} $$
we get:
$$ \alpha=47,\quad \beta=40 $$
$$ \alpha+\beta=47+40=\boxed{73} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.