(A) 360
(B) 348
(C) 320
(D) 340
Correct Answer: 360
Step 1: Find intersection point R (verified explicitly)
From $L_1$: $$ R(1+2\lambda,\;2+3\lambda,\;3+4\lambda) $$ From $L_2$: $$ R(4+5\mu,\;1+2\mu,\;\mu) $$
Equating coordinates:
$$ 1+2\lambda = 4+5\mu \quad (1) $$ $$ 2+3\lambda = 1+2\mu \quad (2) $$ $$ 3+4\lambda = \mu \quad (3) $$
From (3): $\mu = 3+4\lambda$
Substitute in (2): $$ 2+3\lambda = 1+2(3+4\lambda) $$ $$ 2+3\lambda = 7+8\lambda $$ $$ -5\lambda = 5 \Rightarrow \lambda = -1 $$
Then from (3): $\mu = 3+4(-1) = -1$
Verification in equation (1):
LHS $= 1+2(-1) = -1$
RHS $= 4+5(-1) = -1$
Hence equation (1) is also satisfied.
Therefore, $$ R=(-1,-1,-1) $$
Step 2: Find point P
Direction vector of $L_1$ is $(2,3,4)$ with magnitude $\sqrt{29}$.
Since $|\overrightarrow{PR}|=\sqrt{29}$ and $P$ lies in first octant:
$$ P=R+(2,3,4)=(1,2,3) $$
Step 3: Find point Q
Let $Q=(4+5t,\;1+2t,\;t)$.
Using $|\overrightarrow{PQ}|^2=\frac{47}{3}$:
$$ (3+5t)^2+(-1+2t)^2+(t-3)^2=\frac{47}{3} $$
$$ 9t^2+6t+1=0 $$
$$ t=-\frac13 $$
$$ Q=\left(\frac73,\frac13,-\frac13\right) $$
Step 4: Compute $27(QR)^2$
$$ (QR)^2=\frac{40}{3} $$
$$ 27(QR)^2=27\times\frac{40}{3}=\boxed{360} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.