If z = √3/2 + i/2, i = √−1, then (z^201 − i)^8 is equal to
Q. If $$ z=\frac{\sqrt{3}}{2}+\frac{i}{2},\; i=\sqrt{-1}, $$ then $$ (z^{201}-i)^8 $$ is equal to
A. 1
B. 0
C. −1
D. 256
Correct Answer: 256

Explanation

Given:

$$ z=\frac{\sqrt{3}}{2}+\frac{i}{2} $$

Comparing with $z=\cos\theta+i\sin\theta$:

$$ \cos\theta=\frac{\sqrt{3}}{2},\quad \sin\theta=\frac{1}{2} $$

Hence,

$$ \theta=\frac{\pi}{6} $$

So,

$$ z=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6} $$

Now apply De Moivre’s theorem:

$$ z^{201}=\cos\frac{201\pi}{6}+i\sin\frac{201\pi}{6} $$

Reduce the angle:

$$ \frac{201\pi}{6}=33\pi+\frac{\pi}{2} $$

Since $33$ is an odd integer:

$$ \cos(33\pi+\tfrac{\pi}{2})=-\cos\tfrac{\pi}{2}=0 $$

$$ \sin(33\pi+\tfrac{\pi}{2})=-\sin\tfrac{\pi}{2}=-1 $$

Therefore,

$$ z^{201}=-i $$

Now,

$$ z^{201}-i=-i-i=-2i $$

Raise to power 8:

$$ (-2i)^8=2^8\cdot i^8 $$

$$ =256\cdot1=256 $$

Hence, the required value is 256.

Related JEE Main Questions

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top