Let the initial number of moles of NH3 be 1.
Let the degree of dissociation of NH3 be α.
Then, at equilibrium:
NH3 = 1 − α
N2 = α/2
H2 = 3α/2
Total number of moles at equilibrium:
= (1 − α) + (α/2) + (3α/2)
= 1 − α + 2α
= 1 + α
Total pressure = √3 atm
Hence, partial pressures are:
PNH3 = (1 − α)/(1 + α) × √3
PN2 = (α/2)/(1 + α) × √3
PH2 = (3α/2)/(1 + α) × √3
Expression for Kp:
$$ K_p = \frac{(P_{N_2})^{1/2} (P_{H_2})^{3/2}}{P_{NH_3}} $$
Substitute the values:
$$ K_p = \frac{\left(\frac{\alpha \sqrt{3}}{2(1+\alpha)}\right)^{1/2} \left(\frac{3\alpha \sqrt{3}}{2(1+\alpha)}\right)^{3/2}} {\frac{(1-\alpha)\sqrt{3}}{(1+\alpha)}} $$
Simplifying step by step:
$$ K_p = \frac{3^{1/4} \alpha^{1/2}}{(2^{1/2})(1+\alpha)^{1/2}} \times \frac{3^{9/4} \alpha^{3/2}}{(2^{3/2})(1+\alpha)^{3/2}} \times \frac{(1+\alpha)}{(1-\alpha)\sqrt{3}} $$
Combining terms:
$$ K_p = \frac{3^{(1/4+9/4-1/2)} \alpha^2}{4(1-\alpha)(1+\alpha)} $$
$$ K_p = \frac{3^2 \alpha^2}{4(1-\alpha^2)} $$
Given Kp = 9:
$$ 9 = \frac{9\alpha^2}{4(1-\alpha^2)} $$
$$ 4(1-\alpha^2) = \alpha^2 $$
$$ 4 = 5\alpha^2 $$
$$ \alpha^2 = \frac{4}{5} $$
$$ \alpha = \left(\frac{4}{5}\right)^{1/2} $$
Given:
$$ \alpha = (x \times 10^{-2})^{-1/2} $$
Comparing,
$$ (x \times 10^{-2}) = \frac{5}{4} $$
$$ x = \frac{5}{4} \times 10^2 = 125 $$
Therefore,
x = 125
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.