In Rutherford scattering, the distance of closest approach corresponds to the point where the entire kinetic energy of the $\alpha$-particle is converted into electrostatic potential energy.
Energy of $\alpha$-particle:
$$ E = 7.9\ \text{MeV} = 7.9 \times 10^6 \times 1.6 \times 10^{-19} $$
$$ E = 1.264 \times 10^{-12}\ \text{J} $$
Charge of $\alpha$-particle $= +2e$ and charge of nucleus $= +Ze = 79e$.
Electrostatic potential energy at closest approach:
$$ \frac{1}{4\pi\varepsilon_0}\frac{(2e)(79e)}{r} = E $$
Substitute values:
$$ 9\times10^9 \times \frac{2\times79\times(1.6\times10^{-19})^2}{r} = 1.264\times10^{-12} $$
$$ \frac{9\times10^9 \times 158 \times 2.56\times10^{-38}}{r} = 1.264\times10^{-12} $$
$$ r = 2.88 \times 10^{-14}\ \text{m} $$
This gives the radius of the nucleus. Hence, diameter:
$$ D = 2r = 2 \times 2.88 \times 10^{-14} $$
$$ D = 5.76 \times 10^{-14}\ \text{m} $$
Therefore, the estimated diameter of the nucleus is $5.76 \times 10^{-14}$ m.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.