A spherical body of radius r and density σ falls freely through a viscous liquid having density ρ and viscosity η and attains a terminal velocity v₀. Estimated maximum error in the quantity η is :
Q. A spherical body of radius \( r \) and density \( \sigma \) falls freely through a viscous liquid having density \( \rho \) and viscosity \( \eta \) and attains a terminal velocity \( v_0 \). Estimated maximum error in the quantity \( \eta \) is :

(Ignore errors associated with \( \sigma \), \( \rho \) and \( g \))
A. \( 2 \left[ \frac{\Delta r}{r} - \frac{\Delta v_0}{v_0} \right] \)
B. \( 2 \left[ \frac{\Delta r}{r} + \frac{\Delta v_0}{v_0} \right] \)
C. \( \frac{2\Delta r}{r} + \frac{\Delta v_0}{v_0} \)
D. \( 2\frac{\Delta r}{r} - \frac{\Delta v_0}{v_0} \)
Correct Answer: \( \frac{2\Delta r}{r} + \frac{\Delta v_0}{v_0} \)

Step 1: Use Stokes’ Law

Terminal velocity of sphere:

\[ v_0 = \frac{2 r^2 (\sigma - \rho) g}{9 \eta} \]

Step 2: Rearranging for η

\[ \eta = \frac{2 r^2 (\sigma - \rho) g}{9 v_0} \]

Step 3: Identify Variable Dependence

\[ \eta \propto \frac{r^2}{v_0} \]

Step 4: Apply Error Propagation

For multiplication and division:

\[ \frac{\Delta \eta}{\eta} = 2\frac{\Delta r}{r} + \frac{\Delta v_0}{v_0} \]

Related JEE Main Questions

Related Topics

jee mains jee advanced neet physics stokes law terminal velocity viscosity error analysis propagation of errors fluid mechanics measurement errors iit jee preparation physics numericals

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top