Initial separation = 4R
Final separation when just touching = 2R
Total initial kinetic energy:
\[ K_i = 2 \times \frac{1}{2}mu^2 = mu^2 \]
Electrostatic potential energy:
\[ U_e = \frac{kQ^2}{r} \]
Gravitational potential energy:
\[ U_g = -\frac{Gm^2}{r} \]
Total potential energy:
\[ U = \frac{kQ^2}{r} - \frac{Gm^2}{r} \]
Initial potential energy at r = 4R:
\[ U_i = \frac{kQ^2}{4R} - \frac{Gm^2}{4R} \]
Final potential energy at r = 2R:
\[ U_f = \frac{kQ^2}{2R} - \frac{Gm^2}{2R} \]
Using energy conservation (just touching → final KE = 0):
\[ mu^2 + U_i = U_f \]
\[ mu^2 = U_f - U_i \]
\[ mu^2 = \left(\frac{kQ^2}{2R} - \frac{Gm^2}{2R}\right) - \left(\frac{kQ^2}{4R} - \frac{Gm^2}{4R}\right) \]
\[ mu^2 = \frac{kQ^2}{4R} - \frac{Gm^2}{4R} \]
\[ u^2 = \frac{1}{m}\left(\frac{kQ^2 - Gm^2}{4R}\right) \]
\[ u = \sqrt{\frac{kQ^2}{4mR}\left(1 - \frac{Gm^2}{kQ^2}\right)} \]
Final Answer matches Option D
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.