Conduction current density:
\[ J_c = \sigma E \]
Displacement current density:
\[ J_d = \varepsilon_0 \frac{dE}{dt} \]
For sinusoidal wave:
\[ E = E_0 \sin \omega t \]
\[ \frac{dE}{dt} = \omega E_0 \cos \omega t \]
Maximum displacement current density:
\[ J_{d(max)} = \varepsilon_0 \omega E_0 \]
Maximum conduction current density:
\[ J_{c(max)} = \sigma E_0 \]
Required ratio:
\[ \frac{J_c}{J_d} = \frac{\sigma}{\varepsilon_0 \omega} \]
Angular frequency:
\[ f = 100 \text{ MHz} = 10^8 \text{ Hz} \]
\[ \omega = 2\pi f = 2\pi \times 10^8 \]
Given:
\[ \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \]
\[ \varepsilon_0 = \frac{1}{36\pi \times 10^9} \]
Now substitute:
\[ \frac{J_c}{J_d} = \frac{10}{\varepsilon_0 \times 2\pi \times 10^8} \]
After simplifying:
\[ \frac{J_c}{J_d} = 1800 \]
Final Answer = 1800
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.