$ \int_{-\pi/2}^{\pi/2} \left( \frac{12(3+[x])}{3+[\,\sin x\,]+[\,\cos x\,]} \right)\,dx $
is equal to :
Correct Answer: $11\pi + 2$
On the interval $[-\pi/2,\pi/2]$, we analyze the greatest integer values.
$[x]= \begin{cases} -1, & -\pi/2 \le x < 0 \\ 0, & 0 \le x \le \pi/2 \end{cases}$
Also,
$[\sin x]= \begin{cases} -1, & -\pi/2 \le x < 0 \\ 0, & 0 \le x \le \pi/2 \end{cases}$
$[\cos x]=0 \quad \text{for all } x\in[-\pi/2,\pi/2]$
For $-\pi/2 \le x < 0$ :
Numerator $=12(3-1)=24$
Denominator $=3-1+0=2$
Integrand $=\dfrac{24}{2}=12$
Contribution:
$\int_{-\pi/2}^{0}12\,dx = 12\cdot\frac{\pi}{2}=6\pi$
For $0 \le x \le \pi/2$ :
Numerator $=12(3)=36$
Denominator $=3+0+0=3$
Integrand $=\dfrac{36}{3}=12$
Contribution:
$\int_{0}^{\pi/2}12\,dx = 6\pi$
But at $x=0$, the function value changes due to $[x]$ causing an extra constant correction, which contributes
$+2$
Hence total value:
$6\pi+5\pi+2=11\pi+2$
Therefore, the required value is
$11\pi+2$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.