$ \frac{x^{2}}{144}+\frac{y^{2}}{169}=1 $
and the hyperbola $H$ :
$ \frac{x^{2}}{16}-\frac{y^{2}}{\lambda^{2}}=-1 $
have the same foci. If $e$ and $L$ respectively denote the eccentricity and the length of the latus rectum of $H$, then the value of $24(e+L)$ is :
Correct Answer: 296
For the ellipse
$\dfrac{x^{2}}{144}+\dfrac{y^{2}}{169}=1$
Here,
$a^{2}=169,\quad b^{2}=144$
So,
$c^{2}=a^{2}-b^{2}=169-144=25 \Rightarrow c=5$
Thus, the distance of each focus from the center is $5$.
Now consider the hyperbola
$\dfrac{x^{2}}{16}-\dfrac{y^{2}}{\lambda^{2}}=-1$
Rewriting in standard form,
$\dfrac{y^{2}}{\lambda^{2}}-\dfrac{x^{2}}{16}=1$
So,
$a^{2}=\lambda^{2},\quad b^{2}=16$
For a hyperbola,
$c^{2}=a^{2}+b^{2}=\lambda^{2}+16$
Since both conics have the same foci,
$c=5 \Rightarrow \lambda^{2}+16=25 \Rightarrow \lambda^{2}=9$
Hence,
$a=3,\quad b=4$
Eccentricity of the hyperbola:
$e=\dfrac{c}{a}=\dfrac{5}{3}$
Length of the latus rectum of the hyperbola:
$L=\dfrac{2b^{2}}{a}=\dfrac{2\times16}{3}=\dfrac{32}{3}$
Now,
$e+L=\dfrac{5}{3}+\dfrac{32}{3}=\dfrac{37}{3}$
Therefore,
$24(e+L)=24\times\dfrac{37}{3}=8\times37=296$
Hence, the correct answer is
296
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.