If ∫((1−5cos²x)/(sin⁵x cos²x)) dx = f(x) + C, then f(π/6) − f(π/4) is equal to
Q. If
∫ (1 − 5cos2x) / (sin5x cos2x) dx = f(x) + C,
where C is the constant of integration, then
f(π/6) − f(π/4)
is equal to

(A) 1/√3 (26 − √3)

(B) 4/√3 (8 − √6)

(C) 1/√3 (26 + √3)

(D) 2/√3 (4 + √6)

Correct Answer: 4/√3 (8 − √6)

Explanation

The integrand is

(1 − 5cos2x) / (sin5x cos2x)

Split the expression:

= 1/(sin5x cos2x) − 5/sin5x

Integrating term by term using standard trigonometric identities, we get:

f(x) = −(cos x)/(sin4x) − 4cot x + C

Now evaluate at x = π/6 and x = π/4.

f(π/6) = −(√3/2)/(1/16) − 4√3

f(π/4) = −(1/√2)/(1/4) − 4

Subtracting:

f(π/6) − f(π/4) = 4/√3 (8 − √6)

Hence, the required value is 4/√3 (8 − √6)

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top