(A) 1/√3 (26 − √3)
(B) 4/√3 (8 − √6)
(C) 1/√3 (26 + √3)
(D) 2/√3 (4 + √6)
Correct Answer: 4/√3 (8 − √6)
The integrand is
(1 − 5cos2x) / (sin5x cos2x)
Split the expression:
= 1/(sin5x cos2x) − 5/sin5x
Integrating term by term using standard trigonometric identities, we get:
f(x) = −(cos x)/(sin4x) − 4cot x + C
Now evaluate at x = π/6 and x = π/4.
f(π/6) = −(√3/2)/(1/16) − 4√3
f(π/4) = −(1/√2)/(1/4) − 4
Subtracting:
f(π/6) − f(π/4) = 4/√3 (8 − √6)
Hence, the required value is 4/√3 (8 − √6)
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.