(A) 4
(B) 5
(C) 6
(D) 3
Correct Answer: 5
Given that a, b, and c are unit vectors, so:
|a| = |b| = |c| = 1
Using the identity:
|a − b|2 = |a|2 + |b|2 − 2a·b
Adding all three terms:
|a − b|2 + |b − c|2 + |c − a|2 = 6 − 2(a·b + b·c + c·a)
Given this sum equals 9, so:
6 − 2(a·b + b·c + c·a) = 9
a·b + b·c + c·a = −3/2
Now consider:
|2a + kb + kc|2
Expanding:
= 4|a|2 + k2|b + c|2 + 4k(a·b + a·c)
Using |b + c|2 = 2 + 2b·c and the value of dot products:
|2a + kb + kc|2 = 4 + k2(2 + 2b·c) + 4k(a·b + a·c)
Substituting values and simplifying gives:
|2a + kb + kc|2 = 9
Solving, we get:
k = 5
Hence, the positive value of k is 5.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.