For three unit vectors a, b, c satisfying |a − b|² + |b − c|² + |c − a|² = 9 and |2a + kb + kc| = 3, the positive value of k is
Q. For three unit vectors a, b, c satisfying

|a − b|2 + |b − c|2 + |c − a|2 = 9 and |2a + kb + kc| = 3, the positive value of k is

(A) 4

(B) 5

(C) 6

(D) 3

Correct Answer: 5

Explanation

Given that a, b, and c are unit vectors, so:

|a| = |b| = |c| = 1

Using the identity:

|a − b|2 = |a|2 + |b|2 − 2a·b

Adding all three terms:

|a − b|2 + |b − c|2 + |c − a|2 = 6 − 2(a·b + b·c + c·a)

Given this sum equals 9, so:

6 − 2(a·b + b·c + c·a) = 9

a·b + b·c + c·a = −3/2

Now consider:

|2a + kb + kc|2

Expanding:

= 4|a|2 + k2|b + c|2 + 4k(a·b + a·c)

Using |b + c|2 = 2 + 2b·c and the value of dot products:

|2a + kb + kc|2 = 4 + k2(2 + 2b·c) + 4k(a·b + a·c)

Substituting values and simplifying gives:

|2a + kb + kc|2 = 9

Solving, we get:

k = 5

Hence, the positive value of k is 5.

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top