Explanation
Consider the given series:
Σ (-1)k+1 k(k+1)/k!
Rewrite the numerator:
k(k+1) = k2 + k
So the series becomes:
Σ (-1)k+1 (k2/k! + k/k!)
Using standard results:
Σ (-1)k / k! = 1/e
Σ (-1)k k / k! = -1/e
Σ (-1)k k2 / k! = 1/e
Substitute and simplify:
Required sum = 1/e
Hence, the value of the given series is 1/e.