(A) 276
(B) 516
(C) 256
(D) 496
Correct Answer: 496
For the ellipse
$$ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 $$the length of the latus rectum is given by
$$ \text{Latus rectum}=\frac{2b^2}{a} $$Given:
$$ \frac{2b^2}{a}=30 \Rightarrow b^2=15a $$The eccentricity of the ellipse is
$$ e=\sqrt{1-\frac{b^2}{a^2}} $$Given that eccentricity equals the maximum value of
$$ f(t)=-\frac{3}{4}+2t-t^2 $$This quadratic function has maximum value at
$$ t=\frac{2}{2}=1 $$Maximum value:
$$ f_{\max}=-\frac{3}{4}+2(1)-1^2=\frac{1}{4} $$Hence,
$$ e=\frac{1}{4} $$So,
$$ \sqrt{1-\frac{b^2}{a^2}}=\frac{1}{4} $$ $$ 1-\frac{b^2}{a^2}=\frac{1}{16} $$ $$ \frac{b^2}{a^2}=\frac{15}{16} $$Using \( b^2=15a \):
$$ \frac{15a}{a^2}=\frac{15}{16} $$ $$ a=16 $$Then,
$$ b^2=15a=240 $$Finally,
$$ a^2+b^2=16^2+240=256+240=496 $$Hence, the correct answer is 496.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.