Let X = {x ∈ N : 1 ≤ x ≤ 19} and Y = {ax + b : x ∈ X}. If the mean and variance of Y are 30 and 750, respectively, then the sum of all possible values of b is
Q. Let \(X=\{x\in\mathbb{N}:1\le x\le19\}\) and for some \(a,b\in\mathbb{R}\), \(Y=\{ax+b:x\in X\}\). If the mean and variance of the elements of \(Y\) are \(30\) and \(750\), respectively, then the sum of all possible values of \(b\) is

(A) 20

(B) 100

(C) 80

(D) 60

Correct Answer: 60

Explanation

The set \(X=\{1,2,\dots,19\}\).

\[ \text{Mean of }X = \frac{1+19}{2} = 10 \]
\[ \text{Variance of }X = \frac{(19^2-1)}{12} = 30 \]

For the linear transformation \(Y=ax+b\),

\[ \text{Mean}(Y)=a\,\text{Mean}(X)+b \]
\[ \text{Var}(Y)=a^2\,\text{Var}(X) \]

Given \(\text{Var}(Y)=750\),

\[ a^2 \cdot 30 = 750 \Rightarrow a^2=25 \Rightarrow a=\pm5 \]

Given \(\text{Mean}(Y)=30\),

\[ 10a+b=30 \]

Case 1: \(a=5\)

\[ 50+b=30 \Rightarrow b=-20 \]

Case 2: \(a=-5\)

\[ -50+b=30 \Rightarrow b=80 \]

Sum of all possible values of \(b\):

\[ -20+80=60 \]

Therefore, the correct answer is 60.

Related JEE Main Questions

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top