(A) 7/3
(B) 11/3
(C) 5/3
(D) 8/3
Correct Answer: 8/3
Let the center of the circle be $(h, k)$.
Since the circle passes through the origin:
$$ h^2 + k^2 = 16 \quad (1) $$
The circle also passes through $A(-\sqrt{3}a, 0)$:
$$ (h + \sqrt{3}a)^2 + k^2 = 16 $$
Subtracting equation (1):
$$ 2\sqrt{3}ah + 3a^2 = 0 $$
$$ h = -\frac{\sqrt{3}a}{2} $$
Similarly, since the circle passes through $B(0, -\sqrt{2}b)$:
$$ h^2 + (k + \sqrt{2}b)^2 = 16 $$
Subtracting equation (1):
$$ 2\sqrt{2}bk + 2b^2 = 0 $$
$$ k = -\frac{b}{\sqrt{2}} $$
Coordinates of centroid G of ΔOAB:
$$ G\left( \frac{0 - \sqrt{3}a + 0}{3}, \frac{0 + 0 - \sqrt{2}b}{3} \right) $$
$$ G\left( -\frac{\sqrt{3}a}{3}, -\frac{\sqrt{2}b}{3} \right) $$
From earlier results:
$$ a = -\frac{2h}{\sqrt{3}}, \quad b = -\sqrt{2}k $$
Substitute in centroid coordinates:
$$ G\left( \frac{2h}{3}, \frac{2k}{3} \right) $$
Let centroid coordinates be $(x, y)$:
$$ x = \frac{2h}{3}, \quad y = \frac{2k}{3} $$
$$ h = \frac{3x}{2}, \quad k = \frac{3y}{2} $$
Substitute in $h^2 + k^2 = 16$:
$$ \left(\frac{3x}{2}\right)^2 + \left(\frac{3y}{2}\right)^2 = 16 $$
$$ \frac{9}{4}(x^2 + y^2) = 16 $$
$$ x^2 + y^2 = \frac{64}{9} $$
Hence, the radius of the locus is:
$$ \sqrt{\frac{64}{9}} = \boxed{\frac{8}{3}} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.