(A) 32
(B) 64
(C) 12
(D) 16
Correct Answer: 64
First simplify the numerator:
$$ \sqrt{3}\csc20^\circ-\sec20^\circ =\frac{\sqrt{3}}{\sin20^\circ}-\frac{1}{\cos20^\circ} $$
$$ =\frac{\sqrt{3}\cos20^\circ-\sin20^\circ}{\sin20^\circ\cos20^\circ} $$
Using identity:
$$ \sqrt{3}\cos\theta-\sin\theta =2\cos\left(\theta+30^\circ\right) $$
For $\theta=20^\circ$:
$$ \sqrt{3}\cos20^\circ-\sin20^\circ =2\cos50^\circ $$
Hence numerator becomes:
$$ \frac{2\cos50^\circ}{\sin20^\circ\cos20^\circ} $$
Now denominator:
$$ \cos20^\circ\cos40^\circ\cos60^\circ\cos80^\circ =\frac12\cos20^\circ\cos40^\circ\cos80^\circ $$
Using identity:
$$ \cos20^\circ\cos40^\circ\cos80^\circ=\frac18 $$
Thus denominator:
$$ =\frac12\times\frac18=\frac1{16} $$
Therefore the whole expression becomes:
$$ \frac{2\cos50^\circ}{\sin20^\circ\cos20^\circ}\div\frac1{16} =32\cdot\frac{\cos50^\circ}{\sin20^\circ\cos20^\circ} $$
Since $\cos50^\circ=\sin40^\circ$,
$$ =32\cdot\frac{\sin40^\circ}{\sin20^\circ\cos20^\circ} $$
Using $\sin40^\circ=2\sin20^\circ\cos20^\circ$:
$$ =32\times2=64 $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.