Correct Answer: −56
For isothermal expansion of one mole of an ideal gas, the work done is
$$ W = nRT \ln \frac{V_2}{V_1} $$
Here $n=1$, $T = 27^\circ C = 300\,K$ and $\dfrac{V_2}{V_1} = 2$.
So, $$ W = R \cdot 300 \cdot \ln 2 $$
For adiabatic expansion, work done is equal to decrease in internal energy:
$$ W = C_V (T_1 - T_2) $$
For a diatomic gas, $$ C_V = \frac{5}{2}R $$
Thus, $$ R \cdot 300 \cdot \ln 2 = \frac{5}{2}R (300 - T_2) $$
Cancelling $R$, $$ 300 \ln 2 = \frac{5}{2}(300 - T_2) $$
Using $\ln 2 = 0.693$, $$ 300 \times 0.693 = \frac{5}{2}(300 - T_2) $$
$$ 207.9 = \frac{5}{2}(300 - T_2) $$
$$ 300 - T_2 = \frac{2}{5} \times 207.9 \approx 83.2 $$
$$ T_2 \approx 216.8\,K $$
Converting to Celsius: $$ 216.8 - 273 \approx -56^\circ C $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.