Given:
$$ z=\frac{\sqrt{3}}{2}+\frac{i}{2} $$
Comparing with $z=\cos\theta+i\sin\theta$:
$$ \cos\theta=\frac{\sqrt{3}}{2},\quad \sin\theta=\frac{1}{2} $$
Hence,
$$ \theta=\frac{\pi}{6} $$
So,
$$ z=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6} $$
Now apply De Moivre’s theorem:
$$ z^{201}=\cos\frac{201\pi}{6}+i\sin\frac{201\pi}{6} $$
Reduce the angle:
$$ \frac{201\pi}{6}=33\pi+\frac{\pi}{2} $$
Since $33$ is an odd integer:
$$ \cos(33\pi+\tfrac{\pi}{2})=-\cos\tfrac{\pi}{2}=0 $$
$$ \sin(33\pi+\tfrac{\pi}{2})=-\sin\tfrac{\pi}{2}=-1 $$
Therefore,
$$ z^{201}=-i $$
Now,
$$ z^{201}-i=-i-i=-2i $$
Raise to power 8:
$$ (-2i)^8=2^8\cdot i^8 $$
$$ =256\cdot1=256 $$
Hence, the required value is 256.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.