| Class | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
|---|---|---|---|---|
| Frequency | 3 | $\lambda$ | 4 | 7 |
Class intervals are of equal width, so we take class mid-points.
$$ x_i = 6,\;10,\;14,\;18 $$
Corresponding frequencies are:
$$ f_i = 3,\;\lambda,\;4,\;7 $$
Total frequency:
$$ N = 3+\lambda+4+7=\lambda+14 $$
Now calculate $\sum f_i x_i$.
$$ \sum f_i x_i = 3(6)+\lambda(10)+4(14)+7(18) $$
$$ =18+10\lambda+56+126 $$
$$ =200+10\lambda $$
Hence mean $\mu$ is:
$$ \mu=\frac{200+10\lambda}{\lambda+14} $$
Next, calculate $\sum f_i x_i^2$.
$$ \sum f_i x_i^2 = 3(36)+\lambda(100)+4(196)+7(324) $$
$$ =108+100\lambda+784+2268 $$
$$ =3160+100\lambda $$
Variance formula for grouped data is:
$$ \sigma^2=\frac{\sum f_i x_i^2}{N}-\mu^2 $$
Given variance $\sigma^2=19$, so:
$$ 19=\frac{3160+100\lambda}{\lambda+14}-\left(\frac{200+10\lambda}{\lambda+14}\right)^2 $$
Solving this equation gives:
$$ \lambda=6 $$
Substitute $\lambda=6$ in mean:
$$ \mu=\frac{200+60}{20}=13 $$
Therefore,
$$ \lambda+\mu=6+13=19 $$
Hence, the required value is 19.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.