We solve the problem using strict Cartesian sign convention, which is mandatory for JEE Main, JEE Advanced and IIT JEE.
Case 1: Lenses in contact
Equivalent focal length:
$$ \frac{1}{f}=\frac{1}{5}-\frac{1}{4}=-\frac{1}{20} \Rightarrow f=-20\text{ cm} $$
Object distance:
$$ u=-10\text{ cm} $$
Lens formula:
$$ \frac{1}{v}-\frac{1}{u}=\frac{1}{f} $$
$$ \frac{1}{v}+\frac{1}{10}=-\frac{1}{20} \Rightarrow \frac{1}{v}=-\frac{3}{20} $$
$$ v=-\frac{20}{3}\text{ cm} $$
Magnification:
$$ m_1=\frac{v}{u}=\frac{-20/3}{-10}=\frac{2}{3} $$
Case 2: Lenses separated by 1 cm
For convex lens:
$$ \frac{1}{v_1}-\frac{1}{u}=\frac{1}{f_1} $$
$$ \frac{1}{v_1}+\frac{1}{10}=\frac{1}{5} \Rightarrow v_1=10\text{ cm} $$
The concave lens is 1 cm to the right, hence the image lies 9 cm to its right:
$$ u_2=+9\text{ cm} $$
For concave lens:
$$ \frac{1}{v_2}-\frac{1}{u_2}=\frac{1}{f_2} $$
$$ \frac{1}{v_2}-\frac{1}{9}=-\frac{1}{4} \Rightarrow \frac{1}{v_2}=-\frac{5}{36} $$
$$ v_2=-\frac{36}{5}\text{ cm} $$
Magnifications:
$$ m_{\text{convex}}=\frac{10}{-10}=-1 $$
$$ m_{\text{concave}}=\frac{-36/5}{9}=-\frac{4}{5} $$
Total magnification:
$$ m_2=(-1)\times\left(-\frac{4}{5}\right)=\frac{4}{5} $$
Finally,
$$ \left|\frac{m_1}{m_2}\right|=\frac{2/3}{4/5}=\frac{5}{6} $$
Hence, the physically correct answer is:
$\dfrac{5}{6}$, which is not present in the given options.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.