Total energy of a satellite in circular orbit:
\[ E = -\frac{GMm}{2r} \]
Using \( GM = gR_E^2 \)
\[ E = -\frac{gR_E^2 m}{2r} \]
Initial radius:
\[ r_1 = 1.5R_E \]
\[ E_1 = -\frac{gR_E^2 m}{2(1.5R_E)} \]
\[ E_1 = -\frac{gR_E m}{3} \]
Final radius:
\[ r_2 = 3R_E \]
\[ E_2 = -\frac{gR_E^2 m}{2(3R_E)} \]
\[ E_2 = -\frac{gR_E m}{6} \]
Energy supplied:
\[ \Delta E = E_2 - E_1 \]
\[ \Delta E = -\frac{gR_E m}{6} + \frac{gR_E m}{3} \]
\[ \Delta E = \frac{gR_E m}{6} \]
Substitute values:
\[ g = 10,\quad R_E = 6×10^6,\quad m=100 \]
\[ \Delta E = \frac{10 × 6×10^6 × 100}{6} \]
\[ \Delta E = 10^9 \text{ J} \]
\[ = 1000 × 10^6 \text{ J} \]
Final Answer = 1000