(A) $1+\sqrt{2}$
(B) $-1-2\sqrt{2}$
(C) $-1-\sqrt{2}$
(D) $-1+\sqrt{2}$
Correct Answer: $-1-\sqrt{2}$
Let
$$ x=\log_e t \;\Rightarrow\; t=e^x,\quad dt=e^x\,dx $$
Then,
$$ f(t)=\int e^x\frac{1-\sin x}{1-\cos x}\,dx $$
Use standard identities:
$$ 1-\cos x=2\sin^2\left(\frac{x}{2}\right),\quad \sin x=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) $$
So,
$$ \frac{1-\sin x}{1-\cos x} =\frac{1}{2}\csc^2\left(\frac{x}{2}\right)-\cot\left(\frac{x}{2}\right) $$
Hence,
$$ f(t)=\int e^x\left[\frac12\csc^2\left(\frac{x}{2}\right)-\cot\left(\frac{x}{2}\right)\right]dx $$
Put $u=\dfrac{x}{2}$, then $dx=2\,du$:
$$ f(t)=\int e^{2u}\left[\csc^2 u-2\cot u\right]du $$
Recognize:
$$ \frac{d}{du}\big(e^{2u}\cot u\big) =e^{2u}(2\cot u-\csc^2 u) $$
Therefore,
$$ f(t)=-e^{2u}\cot u+C=-e^x\cot\left(\frac{x}{2}\right)+C $$
Thus,
$$ f(t)=-t\cot\left(\frac{\log t}{2}\right)+C $$
Using $f(e^{\pi/2})=-e^{\pi/2}$:
$$ -e^{\pi/2}=-e^{\pi/2}\cot\left(\frac{\pi}{4}\right)+C $$
Since $\cot(\pi/4)=1$, we get $C=0$.
Now,
$$ f(e^{\pi/4})=-e^{\pi/4}\cot\left(\frac{\pi}{8}\right) $$
Using $\cot(\pi/8)=1+\sqrt{2}$:
$$ f(e^{\pi/4})=-(1+\sqrt{2})e^{\pi/4} $$
Hence,
$$ \alpha=\boxed{-1-\sqrt{2}} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.