(A) 48
(B) 84
(C) 36
(D) 24
Correct Answer: 48
For differentiability at $x=1$, the function must be continuous and have equal derivatives from left and right at $x=1$.
Continuity at $x=1$:
Left hand value at $x=1$:
$$ 2\alpha(1^2-2)+2\beta(1)=-2\alpha+2\beta $$
Right hand value at $x=1$:
$$ (\alpha+3)(1)+(\alpha-\beta)=2\alpha+3-\beta $$
Equating both:
$$ -2\alpha+2\beta=2\alpha+3-\beta $$
$$ 4\alpha-3\beta+3=0 \quad (1) $$
Differentiability at $x=1$:
Derivative for $x<1$:
$$ f'(x)=4\alpha x+2\beta $$
Left hand derivative at $x=1$:
$$ 4\alpha+2\beta $$
Derivative for $x\ge1$:
$$ f'(x)=\alpha+3 $$
Equating derivatives:
$$ 4\alpha+2\beta=\alpha+3 $$
$$ 3\alpha+2\beta=3 \quad (2) $$
Solving equations (1) and (2):
From (2),
$$ 2\beta=3-3\alpha \Rightarrow \beta=\frac{3-3\alpha}{2} $$
Substitute in (1):
$$ 4\alpha-3\left(\frac{3-3\alpha}{2}\right)+3=0 $$
$$ 8\alpha-9+9\alpha+6=0 $$
$$ 17\alpha=3 \Rightarrow \alpha=\frac{3}{17} $$
$$ \beta=\frac{21}{17} $$
$$ \alpha+\beta=\frac{24}{17} $$
$$ 34(\alpha+\beta)=34\times\frac{24}{17}=48 $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.