(A) 5
(B) 10
(C) 8
(D) 13
Correct Answer: 10
Angle $ABC$ is formed by the lines $BA$ and $BC$.
Equation of line $BA$ through $B(2,-1)$ and $A(1,0)$:
$$ \frac{y+1}{0+1}=\frac{x-2}{1-2} \Rightarrow y+1=-(x-2) $$
$$ x+y-1=0 \quad (1) $$
Equation of line $BC$ through $B(2,-1)$ and $C\left(\frac73,\frac43\right)$:
$$ \frac{y+1}{\frac43+1}=\frac{x-2}{\frac73-2} \Rightarrow \frac{y+1}{\frac73}=\frac{x-2}{\frac13} $$
$$ y+1=7(x-2) $$
$$ 7x-y-15=0 \quad (2) $$
Using the angle bisector formula for lines
$$ \frac{a_1x+b_1y+c_1}{\sqrt{a_1^2+b_1^2}} =\frac{a_2x+b_2y+c_2}{\sqrt{a_2^2+b_2^2}} $$
Substitute from (1) and (2):
$$ \frac{x+y-1}{\sqrt{2}} =\frac{7x-y-15}{\sqrt{50}} $$
Cross multiplying:
$$ 5(x+y-1)=7x-y-15 $$
$$ 5x+5y-5=7x-y-15 $$
$$ 2x-6y-10=0 $$
$$ x-3y=5 $$
Comparing with $\alpha x+\beta y=5$:
$$ \alpha=1,\quad \beta=-3 $$
Hence,
$$ \alpha^2+\beta^2=1+9=\boxed{10} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.