(A) 238
(B) 136
(C) 476
(D) 952
Correct Answer: 238
Given $a_2-a_1=d$, so
$$ d=-\frac34 $$
General term:
$$ a_n=a_1+(n-1)d $$
Using $a_n=\frac14 a_1$:
$$ a_1+(n-1)\left(-\frac34\right)=\frac14 a_1 $$
$$ a_1-\frac34(n-1)=\frac14 a_1 $$
$$ \frac34 a_1=\frac34(n-1) $$
$$ a_1=n-1 $$
Sum of $n$ terms:
$$ S_n=\frac{n}{2}\left[2a_1+(n-1)d\right] $$
Substitute $a_1=n-1$ and $d=-\frac34$:
$$ \frac{n}{2}\left[2(n-1)-\frac34(n-1)\right]=\frac{525}{2} $$
$$ \frac{n}{2}\cdot\frac54(n-1)=\frac{525}{2} $$
$$ \frac{5n(n-1)}{8}=\frac{525}{2} $$
$$ 5n(n-1)=2100 $$
$$ n(n-1)=420 $$
$$ n=21 $$
Hence,
$$ a_1=n-1=20 $$
Now sum of first 17 terms:
$$ S_{17}=\frac{17}{2}\left[2(20)+16\left(-\frac34\right)\right] $$
$$ =\frac{17}{2}(40-12) $$
$$ =\frac{17}{2}\times28=238 $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.