(A) $\dfrac{96}{5}$
(B) $\dfrac{8}{5}$
(C) $\dfrac{16}{5}$
(D) $\dfrac{32}{5}$
Correct Answer: $\dfrac{32}{5}$
For an ellipse, eccentricity $e=\dfrac{c}{a}$, where $2c$ is the distance between the foci.
Given for both ellipses:
$$ e=\frac45 $$
Ellipse $E_1$
Distance between foci is $8$, hence
$$ 2c_1=8 \Rightarrow c_1=4 $$
Using $e=\dfrac{c_1}{a}$:
$$ \frac45=\frac{4}{a} \Rightarrow a=5 $$
Now,
$$ b^2=a^2(1-e^2)=25\left(1-\frac{16}{25}\right)=9 $$
Length of latus rectum:
$$ l_1=\frac{2b^2}{a}=\frac{2\times9}{5}=\frac{18}{5} $$
Ellipse $E_2$
Given relation:
$$ 2l_1^2=9l_2 $$
Substitute $l_1=\dfrac{18}{5}$:
$$ 2\left(\frac{18}{5}\right)^2=9l_2 $$
$$ l_2=\frac{72}{25} $$
For $E_2$, since major axis is along $y$-direction:
$$ l_2=\frac{2A^2}{B} $$
Also,
$$ e=\frac{c_2}{B}=\frac45 \Rightarrow c_2=\frac45 B $$
Using $A^2=B^2(1-e^2)=\frac{9}{25}B^2$:
$$ l_2=\frac{2\times \frac{9}{25}B^2}{B}=\frac{18}{25}B $$
Equate with $\dfrac{72}{25}$:
$$ \frac{18}{25}B=\frac{72}{25} $$
$$ B=4 $$
Thus,
$$ c_2=\frac45\times4=\frac{16}{5} $$
Distance between the foci of $E_2$:
$$ 2c_2=\boxed{\frac{32}{5}} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.