The de Broglie wavelength of a particle is given by
$$ \lambda = \frac{h}{p} $$
For a gas molecule at temperature $T$, the average kinetic energy is
$$ \frac{3}{2}kT = \frac{1}{2}mv^2 $$
From this,
$$ v = \sqrt{\frac{3kT}{m}} $$
Momentum of the molecule is
$$ p = mv = m\sqrt{\frac{3kT}{m}} = \sqrt{3mkT} $$
Hence the de Broglie wavelength becomes
$$ \lambda = \frac{h}{\sqrt{3mkT}} $$
Given values:
$$ h = 6.63 \times 10^{-34}\,\text{J·s} $$ $$ k = 1.38 \times 10^{-23}\,\text{J/K} $$ $$ T = 27^\circ\text{C} = 300\,\text{K} $$ $$ m = 5.31 \times 10^{-26}\,\text{kg} $$
Substituting,
$$ \lambda = \frac{6.63 \times 10^{-34}}{\sqrt{3 \times 5.31 \times 10^{-26} \times 1.38 \times 10^{-23} \times 300}} $$
Calculate inside the square root:
$$ 3 \times 5.31 \times 1.38 \times 300 \approx 6590 $$
$$ \sqrt{6590 \times 10^{-49}} \approx 8.12 \times 10^{-24.5} $$
Now,
$$ \lambda \approx \frac{6.63 \times 10^{-34}}{2.55 \times 10^{-23}} $$
$$ \lambda \approx 2.6 \times 10^{-11}\,\text{m} $$
$$ \lambda = 26 \times 10^{-12}\,\text{m} $$
Hence,
$$ x = 26 $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.