(A) $1.04 \times 10^{13}$
(B) $1.66 \times 10^{16}$
(C) $1.66 \times 10^{15}$
(D) $1.04 \times 10^{16}$
According to Einstein’s photoelectric equation,
$$ h\nu = \phi + K_{\text{max}} $$
Given that the kinetic energy of photoelectrons is zero,
$$ h\nu = \phi $$
Angular frequency $\omega$ is related to frequency by
$$ \omega = 2\pi\nu $$
Substituting $\nu = \dfrac{\phi}{h}$,
$$ \omega = 2\pi \frac{\phi}{h} $$
Given,
$$ \phi = 110 \times 10^{-20}\ \text{J}, \quad h = 6.63 \times 10^{-34}\ \text{J·s} $$
$$ \omega = 2\pi \times \frac{110 \times 10^{-20}}{6.63 \times 10^{-34}} $$
$$ \omega \approx 1.04 \times 10^{16}\ \text{rad/s} $$
Hence, the angular frequency of the incident light is
$1.04 \times 10^{16}\ \text{rad/s}$.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.