When a charged particle is accelerated through potential V:
\[ \text{Kinetic Energy} = qV \]
\[ \frac{1}{2}mv^2 = qV \]
Momentum:
\[ p = mv \]
From kinetic energy relation:
\[ v = \sqrt{\frac{2qV}{m}} \]
\[ p = m \sqrt{\frac{2qV}{m}} \]
\[ p = \sqrt{2mqV} \]
De Broglie wavelength:
\[ \lambda = \frac{h}{p} \]
\[ \lambda = \frac{h}{\sqrt{2mqV}} \]
Substitute values:
\[ h = 6.6 \times 10^{-34} \]
\[ m = 6 \times 10^{-27} \]
\[ q = 3 \times 10^{-19} \]
\[ V = 1.21 \]
\[ \lambda = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 6 \times 10^{-27} \times 3 \times 10^{-19} \times 1.21}} \]
First calculate inside root:
\[ 2 \times 6 \times 3 \times 1.21 = 43.56 \]
\[ = 43.56 \times 10^{-46} \]
\[ \sqrt{43.56 \times 10^{-46}} = 6.6 \times 10^{-23} \]
\[ \lambda = \frac{6.6 \times 10^{-34}}{6.6 \times 10^{-23}} \]
\[ \lambda = 10^{-11} \text{ m} \]
\[ \lambda = 10 \times 10^{-12} \text{ m} \]
Therefore, \( \alpha = 10 \)
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.