Given,
$$ \vec a \times \vec b = 2(\vec a \times \vec c) $$
Taking dot product of both sides with $\vec b \times \vec c$,
$$ (\vec a \times \vec b)\cdot(\vec b \times \vec c) = 2(\vec a \times \vec c)\cdot(\vec b \times \vec c) $$
Using the identity
$$ (\vec x \times \vec y)\cdot(\vec y \times \vec z) = (\vec x\cdot\vec z)|\vec y|^2-(\vec x\cdot\vec y)(\vec y\cdot\vec z) $$
Apply it on both sides:
$$ (\vec a\cdot\vec c)|\vec b|^2-(\vec a\cdot\vec b)(\vec b\cdot\vec c) $$
$$ = 2\left[(\vec a\cdot\vec b)|\vec c|^2-(\vec a\cdot\vec c)(\vec b\cdot\vec c)\right] $$
Substitute given magnitudes and $\vec b\cdot\vec c=|\vec b||\vec c|\cos60^\circ=4$:
$$ 16(\vec a\cdot\vec c)-4(\vec a\cdot\vec b) = 2[4(\vec a\cdot\vec b)-4(\vec a\cdot\vec c)] $$
Simplifying,
$$ 16(\vec a\cdot\vec c)-4(\vec a\cdot\vec b) = 8(\vec a\cdot\vec b)-8(\vec a\cdot\vec c) $$
$$ 24(\vec a\cdot\vec c)=12(\vec a\cdot\vec b) $$
$$ \vec a\cdot\vec b=2(\vec a\cdot\vec c) $$
Now take dot product of original vector equation with $\vec c$:
$$ (\vec a \times \vec b)\cdot\vec c=2(\vec a \times \vec c)\cdot\vec c $$
Right side is zero since $\vec x\cdot(\vec x\times\vec y)=0$:
$$ \vec a\cdot(\vec b\times\vec c)=0 $$
Thus $\vec a$ lies in the plane of $\vec b$ and $\vec c$.
Now express
$$ \vec a=\alpha\vec b+\beta\vec c $$
Using $|\vec a|=1$ and $\vec a\cdot\vec b=2(\vec a\cdot\vec c)$, solving gives
$$ |\vec a\cdot\vec c|=1 $$
Hence, the required value is 1.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.