Let a⃗ , b⃗ , c⃗ be three vectors such that a⃗ × b⃗ = 2(a⃗ × c⃗ ). If |a⃗ | = 1, |b⃗ | = 4, |c⃗ | = 2, and the angle between b⃗ and c⃗ is 60°, then |a⃗ · c⃗ | is equal to
Q. Let $\vec a, \vec b, \vec c$ be three vectors such that $$ \vec a \times \vec b = 2(\vec a \times \vec c). $$ If $$ |\vec a| = 1,\quad |\vec b| = 4,\quad |\vec c| = 2, $$ and the angle between $\vec b$ and $\vec c$ is $60^\circ$, then $$ |\vec a \cdot \vec c| $$ is equal to
A. 2
B. 0
C. 1
D. 4
Correct Answer: 1

Explanation

Given,

$$ \vec a \times \vec b = 2(\vec a \times \vec c) $$

Taking dot product of both sides with $\vec b \times \vec c$,

$$ (\vec a \times \vec b)\cdot(\vec b \times \vec c) = 2(\vec a \times \vec c)\cdot(\vec b \times \vec c) $$

Using the identity

$$ (\vec x \times \vec y)\cdot(\vec y \times \vec z) = (\vec x\cdot\vec z)|\vec y|^2-(\vec x\cdot\vec y)(\vec y\cdot\vec z) $$

Apply it on both sides:

$$ (\vec a\cdot\vec c)|\vec b|^2-(\vec a\cdot\vec b)(\vec b\cdot\vec c) $$

$$ = 2\left[(\vec a\cdot\vec b)|\vec c|^2-(\vec a\cdot\vec c)(\vec b\cdot\vec c)\right] $$

Substitute given magnitudes and $\vec b\cdot\vec c=|\vec b||\vec c|\cos60^\circ=4$:

$$ 16(\vec a\cdot\vec c)-4(\vec a\cdot\vec b) = 2[4(\vec a\cdot\vec b)-4(\vec a\cdot\vec c)] $$

Simplifying,

$$ 16(\vec a\cdot\vec c)-4(\vec a\cdot\vec b) = 8(\vec a\cdot\vec b)-8(\vec a\cdot\vec c) $$

$$ 24(\vec a\cdot\vec c)=12(\vec a\cdot\vec b) $$

$$ \vec a\cdot\vec b=2(\vec a\cdot\vec c) $$

Now take dot product of original vector equation with $\vec c$:

$$ (\vec a \times \vec b)\cdot\vec c=2(\vec a \times \vec c)\cdot\vec c $$

Right side is zero since $\vec x\cdot(\vec x\times\vec y)=0$:

$$ \vec a\cdot(\vec b\times\vec c)=0 $$

Thus $\vec a$ lies in the plane of $\vec b$ and $\vec c$.

Now express

$$ \vec a=\alpha\vec b+\beta\vec c $$

Using $|\vec a|=1$ and $\vec a\cdot\vec b=2(\vec a\cdot\vec c)$, solving gives

$$ |\vec a\cdot\vec c|=1 $$

Hence, the required value is 1.

Related JEE Main Questions

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top