The de Broglie wavelength of an oxygen molecule at 27°C is x × 10⁻¹² m
Q. The de Broglie wavelength of an oxygen molecule at $27^\circ\text{C}$ is $x \times 10^{-12}\,\text{m}$. The value of $x$ is (take Planck's constant $= 6.63 \times 10^{-34}\,\text{J·s}$, Boltzmann constant $= 1.38 \times 10^{-23}\,\text{J/K}$, mass of oxygen molecule $= 5.31 \times 10^{-26}\,\text{kg}$)
A. 24
B. 30
C. 20
D. 26
Correct Answer: 26

Explanation

The de Broglie wavelength of a particle is given by

$$ \lambda = \frac{h}{p} $$

For a gas molecule at temperature $T$, the average kinetic energy is

$$ \frac{3}{2}kT = \frac{1}{2}mv^2 $$

From this,

$$ v = \sqrt{\frac{3kT}{m}} $$

Momentum of the molecule is

$$ p = mv = m\sqrt{\frac{3kT}{m}} = \sqrt{3mkT} $$

Hence the de Broglie wavelength becomes

$$ \lambda = \frac{h}{\sqrt{3mkT}} $$

Given values:

$$ h = 6.63 \times 10^{-34}\,\text{J·s} $$ $$ k = 1.38 \times 10^{-23}\,\text{J/K} $$ $$ T = 27^\circ\text{C} = 300\,\text{K} $$ $$ m = 5.31 \times 10^{-26}\,\text{kg} $$

Substituting,

$$ \lambda = \frac{6.63 \times 10^{-34}}{\sqrt{3 \times 5.31 \times 10^{-26} \times 1.38 \times 10^{-23} \times 300}} $$

Calculate inside the square root:

$$ 3 \times 5.31 \times 1.38 \times 300 \approx 6590 $$

$$ \sqrt{6590 \times 10^{-49}} \approx 8.12 \times 10^{-24.5} $$

Now,

$$ \lambda \approx \frac{6.63 \times 10^{-34}}{2.55 \times 10^{-23}} $$

$$ \lambda \approx 2.6 \times 10^{-11}\,\text{m} $$

$$ \lambda = 26 \times 10^{-12}\,\text{m} $$

Hence,

$$ x = 26 $$

Related JEE Main Questions

Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.

Scroll to Top