(A) 27
(B) 24
(C) 23
(D) 21
Correct Answer: 27
Let the four terms of the A.P. be
$$ a_1 = a - 3l,\quad a_2 = a - l,\quad a_3 = a + l,\quad a_4 = a + 3l $$Sum of the four terms:
$$ (a - 3l) + (a - l) + (a + l) + (a + 3l) = 4a $$Given,
$$ 4a = 48 \Rightarrow a = 12 $$So the terms are:
$$ 12 - 3l,\; 12 - l,\; 12 + l,\; 12 + 3l $$Now compute the product:
$$ a_1a_2a_3a_4 = (12 - 3l)(12 - l)(12 + l)(12 + 3l) $$Group the terms:
$$ = [(12)^2 - (3l)^2][(12)^2 - l^2] $$ $$ = (144 - 9l^2)(144 - l^2) $$Expand:
$$ = 144^2 - 144l^2 - 1296l^2 + 9l^4 $$ $$ = 20736 - 1440l^2 + 9l^4 $$Given condition:
$$ a_1a_2a_3a_4 + l^4 = 361 $$Substitute:
$$ 20736 - 1440l^2 + 9l^4 + l^4 = 361 $$ $$ 10l^4 - 1440l^2 + 20375 = 0 $$Try integer values of \(l\). For \(l = 5\):
$$ 10(625) - 1440(25) + 20375 $$ $$ = 6250 - 36000 + 20375 = 361 $$Hence, \(l = 5\).
Largest term of the A.P.:
$$ a_4 = 12 + 3l = 12 + 15 = 27 $$Therefore, the correct answer is 27.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.