(A) $\dfrac{73}{10^8}$
(B) $\dfrac{67}{10^8}$
(C) $\dfrac{7}{10^7}$
(D) $\dfrac{81}{10^8}$
Correct Answer: $\dfrac{73}{10^8}$
Probability that a bulb selected is defective is
$$ p=\frac{10}{100}=\frac{1}{10}, \quad q=\frac{9}{10} $$
Since selection is with replacement, the number of defective bulbs follows a binomial distribution with $n=8$.
Required probability is getting at least 7 defective bulbs:
$$ P(X\ge7)=P(X=7)+P(X=8) $$
$$ P(X=7)=\binom{8}{7}\left(\frac{1}{10}\right)^7\left(\frac{9}{10}\right) $$
$$ =\frac{72}{10^8} $$
$$ P(X=8)=\binom{8}{8}\left(\frac{1}{10}\right)^8=\frac{1}{10^8} $$
$$ P(X\ge7)=\frac{72}{10^8}+\frac{1}{10^8}=\frac{73}{10^8} $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.