(A) 50
(B) 52
(C) 49
(D) 51
Correct Answer: 49
The general term of the given series can be written as
$$ \frac{1}{(2r-1)!\,(27-2r)!}, \quad r=1,2,3,\ldots,13 $$
Using the identity
$$ \frac{1}{a!\,b!}=\frac{1}{(a+b)!}\binom{a+b}{a}, $$
each term becomes
$$ \frac{1}{26!}\binom{26}{2r-1}. $$
Hence,
$$ S=\frac{1}{26!}\sum_{r=1}^{13}\binom{26}{2r-1}. $$
The sum of binomial coefficients with odd indices is
$$ \sum \binom{26}{\text{odd}}=2^{25}. $$
Therefore,
$$ S=\frac{2^{25}}{26!}. $$
Now,
$$ 13S=\frac{13\cdot2^{25}}{26!}=\frac{2^{26}}{25!}. $$
Comparing with $\dfrac{2^k}{n!}$, we get
$$ k=26,\quad n=25. $$
Hence,
$$ n+k=25+26=\boxed{49}. $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.