(A) 170
(B) 316
(C) 177
(D) 307
Correct Answer: 316
For the logarithmic function to be defined:
Base must satisfy:
$$ 10x^2-17x+7>0 \quad \text{and} \quad 10x^2-17x+7\ne1 $$
Argument must satisfy:
$$ 18x^2-11x+1>0 $$
Solving base inequality:
$$ 10x^2-17x+7=0 $$
$$ (5x-7)(2x-1)=0 $$
$$ x=\frac{1}{2},\;\frac{7}{5} $$
Since coefficient of $x^2$ is positive,
$$ 10x^2-17x+7>0 \Rightarrow x<\frac12 \;\text{or}\; x>\frac75 $$
Solving argument inequality:
$$ 18x^2-11x+1=0 $$
$$ (9x-1)(2x-1)=0 $$
$$ x=\frac19,\;\frac12 $$
Thus,
$$ 18x^2-11x+1>0 \Rightarrow x<\frac19 \;\text{or}\; x>\frac12 $$
Base not equal to 1:
$$ 10x^2-17x+7=1 $$
$$ 10x^2-17x+6=0 $$
$$ (5x-6)(2x-1)=0 $$
$$ x=\frac12,\;\frac65 $$
$x=\frac12$ is already excluded; additional exclusion is
$$ x=\frac65 $$
Combining all conditions, domain becomes:
$$ (-\infty,\tfrac19)\cup(\tfrac12,\tfrac65)\cup(\tfrac75,\infty) $$
Thus,
$$ a=\frac19,\; b=\frac12,\; c=\frac65,\; d=\frac75,\; e=\frac65 $$
$$ a+b+c+d+e=\frac19+\frac12+\frac65+\frac75+\frac65=\frac{158}{45} $$
$$ 90(a+b+c+d+e)=90\times\frac{158}{45}=316 $$
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.