The given hyperbola is
$$ \frac{x^2}{4}-\frac{y^2}{b^2}=1 $$
Here,
$$ a^2=4 \Rightarrow a=2 $$
For a hyperbola,
$$ e=\sqrt{1+\frac{b^2}{a^2}} $$
Given $e=\sqrt{3}$, so
$$ \sqrt{3}=\sqrt{1+\frac{b^2}{4}} $$
Squaring both sides,
$$ 3=1+\frac{b^2}{4} $$
$$ \frac{b^2}{4}=2 $$
$$ b^2=8 $$
Let the chord $PQ$ be perpendicular to the x-axis at $x=h$.
Coordinates of $P$ and $Q$ are $(h,y)$ and $(h,-y)$.
Substitute $x=h$ in the hyperbola equation:
$$ \frac{h^2}{4}-\frac{y^2}{8}=1 $$
$$ \frac{y^2}{8}=\frac{h^2}{4}-1 $$
$$ y^2=2(h^2-4) $$
So,
$$ PQ=2y=2\sqrt{2(h^2-4)} $$
Distance $OP$ is:
$$ OP=\sqrt{h^2+y^2} $$
$$ =\sqrt{h^2+2(h^2-4)} $$
$$ =\sqrt{3h^2-8} $$
Since $OPQ$ is an equilateral triangle,
$$ OP=PQ $$
$$ \sqrt{3h^2-8}=2\sqrt{2(h^2-4)} $$
Squaring both sides,
$$ 3h^2-8=8(h^2-4) $$
$$ 3h^2-8=8h^2-32 $$
$$ 5h^2=24 $$
$$ h^2=\frac{24}{5} $$
Side of equilateral triangle:
$$ OP=\sqrt{3h^2-8}=\sqrt{\frac{72}{5}-8} $$
$$ =\sqrt{\frac{32}{5}} $$
Area of equilateral triangle:
$$ \text{Area}=\frac{\sqrt{3}}{4}\times OP^2 $$
$$ =\frac{\sqrt{3}}{4}\times\frac{32}{5} $$
$$ =\frac{8\sqrt{3}}{5} $$
Hence, the area of triangle $OPQ$ is $\dfrac{8\sqrt{3}}{5}$.
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.