In Young's double slit experiment, fringe shift due to insertion of a thin sheet is:
\[ \text{Fringe shift} = \frac{D}{d} (\mu - 1)t \]
Given:
\[ D = 1 \text{ m} \]
\[ d = 0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m} \]
\[ t = 20 \text{ μm} = 20 \times 10^{-6} \text{ m} \]
\[ \text{Fringe shift} = 20 \text{ mm} = 20 \times 10^{-3} \text{ m} \]
Substitute in formula:
\[ 20 \times 10^{-3} = \frac{1}{0.4 \times 10^{-3}} (\mu - 1)(20 \times 10^{-6}) \]
\[ 20 \times 10^{-3} = \frac{1}{0.4} \times 10^{3} \times (\mu - 1)(20 \times 10^{-6}) \]
\[ = 2500 (\mu - 1)(20 \times 10^{-6}) \]
\[ 20 \times 10^{-3} = 2500 \times 20 \times 10^{-6} (\mu - 1) \]
\[ 20 \times 10^{-3} = 50000 \times 10^{-6} (\mu - 1) \]
\[ 20 \times 10^{-3} = 0.05 (\mu - 1) \]
\[ \mu - 1 = \frac{20 \times 10^{-3}}{0.05} \]
\[ \mu - 1 = 0.4 \]
\[ \mu = 1.4 \]
Given \( \mu = \alpha/10 \)
\[ 1.4 = \frac{\alpha}{10} \]
\[ \alpha = 14 \]
Therefore, \( \alpha = 14 \)
Updated for JEE Main 2026: This PYQ is important for JEE Mains, JEE Advanced and other competitive exams. Practice more questions from this chapter.